
Abstract-The percentage of radiodense tissue in a mammogram 
has been used as a marker for determining breast cancer risk. In 
this paper, we present an image segmentation technique for 
identifying tissue and non-tissue regions of a digitized X-ray 
image. This procedure constitutes a vital step prior to subse-
quent processing for estimating the amount of radiodense tissue. 
The process involves the generation of a segmentation mask 
developed by using discrete wavelet transform techniques. Ini-
tial results have been promising, demonstrating the feasibility of 
the approach. 
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I. INTRODUCTION 

 

Mammography has emerged as a reliable technique for 
the early detection of breast cancer – the second leading cause 
of cancer-related mortality among American women [1]. The 
radiographic appearance of female breast consists of radiolu-
cent (dark) regions due to fat and radiodense (light) regions 
due to connective and epithelial tissue. The amount of radio-
dense tissue can be used as a marker for predicting breast 
cancer risk. Women with radiodense tissue in more than 60-
75% of the breast are at four to six times greater risk of de-
veloping breast cancer than those with lesser densities [2]. 
The estimation of radiodense tissue has traditionally been a 
subjective determination by trained radiologists, with very 
few published work describing quantitative measures [3, 4]. 
This paper presents results obtained at Rowan University 
during the course of a research project intended to support an 
investigation conducted at Fox Chase Cancer Center (FCCC) 
in Philadelphia, PA, examining the correlation between die-
tary patterns and breast density. We have developed image 
processing algorithms that automatically scan digitized 
mammogram images to locate the breast tissue region in the 
X-ray, segment the tissue into radiodense and radiolucent 
indications and quantify the amount and percentage of radio-
dense tissue. 
 The objective of the project described in this paper is to 
develop an image processing algorithm that dynamically 
segments a digitized mammogram image into tissue (breast) 
and non-tissue regions, prior to subsequent analysis for iden-
tifying the radiodense indications. This process involves the 
generation of a segmentation mask, as shown in Fig. 1. Re-
search data has been obtained from an existing cohort of 
women enrolled in the Family Risk Analysis Program 
(FRAP) at FCCC. 
 This paper is organized as follows: a background of the 
research activity is presented in the introduction section, fol-
lowed by the overall approach and a detailed description of 
the implementation procedure. Typical results are then pre-
sented along with comparative evaluations of the approach to 
the results of other techniques. Finally, conclusions drawn 
from this investigative study are presented. 

 
II. APPROACH 

 

A block diagram describing the overall approach is shown 
in Fig. 2. The procedure described in this paper addresses the 
highlighted two blocks, namely, the mask generation and 
tissue segmentation. 

The original mammogram X-rays were first digitized using 
a commercial film scanner. The images were then pre-
processed to reduce the spatial resolution and improve the 
contrast using histogram adjustment. A segmentation mask 
was then designed to distinguish the tissue region from the 
film region.  This mask is a template consisting of a binary 
matrix of size equal to that of the original image. The seg-
mentation algorithm described below determines which sec-
tions of the image correspond to a tissue region, and assigns 
the value “1” (white) to the corresponding regions of the ma-
trix. The rest of the matrix, corresponding to the non-tissue 
region, is set to “0” (black). This process allows us to subse-
quently identify radiodense regions in the image by concen-
trating on the tissue region only. However, determining an 
appropriate gray-level threshold for this conversion process is 
a non-trivial task. This is because the threshold cannot be an 
absolute value: it must respond to variations in signal inten-
sity from image to image,  but more importantly to local 
variations within the same image. 

Identifying the radiodense tissue region in a segmented 
gray-level mammogram image essentially involves convert-
ing the 256 gray-level image to binary (black-and-white) 
format. Radiodense tissue pixels are assigned a gray-level 
value of 1 (white) whereas other pixels are assigned the value 
0 (black). The dynamic density estimation based technique 
for detecting radiodense indications is described in [5].  
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Fig. 1. Digitized mammogram image and its associated segmentation mask. 
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Fig. 2. Block diagram of research approach. 

 
III. PROCEDURE 

 

A. Generation of the Segmentation Mask 
The first step in the segmentation algorithm involves 

scanning the X-ray image to obtain the digitized mammo-
gram. A line-scan of a single row in the digitized mammo-
gram can be seen in Fig. 3. The goal is to identify the gray-
level transition at the boundary of the tissue region. Note that 
this line-scan exhibits both local and global variations in 
gray-level. The global variation corresponds to the transition 
in the X-ray from the tissue to the non-tissue region, which is 
often obscured by the local variations corresponding to local 
changes in tissue density. The large variance of the local 
variations makes it impossible for a preset threshold to iden-
tify the tissue region (the left half of the scan). Furthermore, 
these local variations within the tissue region also make it 
very difficult to employ standard edge detection algorithms.  
We therefore use a discrete wavelet transform (DWT) based 
multiresolution decomposition [6] to simultaneously model 
both these variations in the gray-level for each line-scan in 
the original X-ray image. A polynomial fit is then used to 
correlate adjacent line scans to generate the final mask tem-
plate. The mask template is a binary image consisting of 
white pixels corresponding to tissue regions and black pixels 
corresponding to non-tissue regions. The mask is then placed 
on the original mammogram image. The resulting segmented 
image contains the gray-level value of 0 (black) on all non-
tissue regions, and the original gray-scale values in all tissue 
regions.  
B. Discrete Wavelet Transform 

The DWT is used for modeling local variations and global 
variations simultaneously in the line-scan for identifying the 
transition from the tissue to non-tissue region. In particular, 
the approximation coefficients of each line scan at a particu-
lar decomposition level were used to remove the local varia-
tions, while conserving the global variations. 

                     (a)                                                              (b) 
Fig. 3. (a) Original mammogram image and (b) line-scan 

 
An extensive study of the image heuristics revealed that 

Daubechies mother wavelet with five vanishing moments 
provided the most optimal model. The fifth level approxima-
tion coefficients of the original signal provided the space-
frequency information corresponding to the tissue boundary 
of the mammogram. This model is indicated by   
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where iaY and idY are the approximation and detail (DWT) 
coefficients at the ith level, respectively, and h(n) and g(n) are 
lowpass and highpass filters, obtained from Daubechies scal-
ing and wavelet functions, respectively. At level zero, aY0  
represents the original raw line scan obtained from the image. 
Fig. 4 shows the associated wavelet decomposition tree for 
this system. 
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Fig. 4. Multiresolution wavelet decomposition tree 

 

 Fig. 5 illustrates a typical line scan and the corresponding 
5th level approximation coefficients. From these coefficients, 
a threshold can be easily computed based on the statistical 
properties of the signal for identifying the tissue boundary. 
 

 
Fig.5. A typical line-scan and corresponding 5th level DWT  

approximation coefficients. 



 

                            

                       

         

       
    (a)            (b)               (c)           (d) 

Fig. 6. Four sets of data showing the original image, edge of tissue region as detected by using the DWT,  
the mask developed from this edge and the original image after multiplied by the mask 

 
IV. RESULTS 

Mammogram X-rays of left and right craniocaudal (lcc and 
rcc) as well as mediolateral-oblique views were obtained 
from a cohort of 30 women enrolled at FCCC’s Family Risk 
Analysis Program (FRAP). The X-rays were digitized at 500 
dpi using an Agfa medical-grade film scanner. Fig. 6 shows 
typical segmentation results obtained by applying the above-

described approach. The images shown in Fig.6 indicate that 
the DWT is able to model the edge of the tissue region with 
sufficient accuracy. A quantitative analysis of the proximity 
of the mask contour to the tissue-film boundary can be made 
by comparing the dynamically generated mask to a segmenta-
tion mask that is generated manually. Table 1 shows the per-
centage difference and mean square errors (MSE) as calcu-



lated in (3) and (4), respectively, for each of the four cases 
analyzed in Fig. 5.  
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where Mdyn and Mman are the number of 1 (white) pixels in the 
DWT based segmentation mask and the manually generated 
mask, respectively, and N is the total number of pixels in the 
image. 

TABLE I 
Percentage and mean square error from manually developed reference mask 

Patient 
ID 

View Hand 
Mask (pix) 

Dynamic 
Mask (pix) 

% diff MSE 
(x104) 

232217 lcc 829614 1049359 26.48 1.1641 
235179 rcc 861665 653900 24.11 1.1507 
245596 lcc 1197724 988142 17.49 1.2789 
244231 rcc 1049230 1216404 15.93 0.7431 

 
It should be noted that the manual segmentation provides 

the exact tissue boundary, and therefore all error figures are 
compared with respect to this manual segmentation bench-
mark. However, often times in image processing applications, 
the true performance of the algorithm can only be assessed by 
subjective visual evaluation of the resulting image. Further-
more, the MSE is only meaningful for relative comparison of 
different masks. Therefore, the numbers given in Table I 
should be interpreted within these guidelines. 

 
 

V. DISCUSSIONS AND CONCLUSIONS 
 

A DWT based approach for segmenting tissue regions in 
digitized mammogram X-rays is presented. The algorithm is 
capable of distinguishing local variations from global varia-
tions in tissue density, and hence able to identify the tissue to 
non-tissue boundary. The method is simple to implement and 
yields consistent results. It has been validated using data from 
an on-going study. 

It can be argued that the DWT approximation of the line 
scans can also be obtained using a simple low pass filtering 
procedure, or by using any one of the multitude of edge de-
tection algorithms available in image processing. However, it 
should be noted that the local variations within the tissue re-
gion renders edge detection extremely difficult. 

Fig 7. compares segmentation results obtained by using 
the DWT based mask with a mask obtained by low pass fil-
tering the individual line-scans. Although comparable results 
were obtained using a simple low pass filter based procedure, 
the DWT based approach provided us with a more robust 
estimation of the boundary.  
 
 

    
                         (a)                                            (b) 

Fig. 7. Images segmented with  
(a) DWT derived mask and (b) low pass filter  derived mask 

 
 

Furthermore, identifying the appropriate threshold was 
significantly simpler and computationally less expensive in 
the DWT based approach due to the 32-fold reduction in the 
number of pixels at the 5th level of the decomposition. Al-
though computing the DWT at five levels is computationally 
more expensive then a single lowpass filtering, identifying 
the appropriate threshold takes considerably less amount of 
time in the DWT based approach, making the DWT based 
approach the faster overall algorithm. 
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